
HDL Simulation

ModelSim DE

w w w . m e n t o r . c o m / f v

D A T A S H E E T

Simulation and Verification

Sophisticated FPGA Verification
ModelSim® DE packs an unprecedented level of verification capabilities in a
cost-effective HDL simulation solution. In addition to supporting standard
HDLs, ModelSim DE increases design quality and debug productivity.

ModelSim’s award-winning Single Kernel Simulator (SKS) technology
enables transparent mixing of VHDL and Verilog in one design. Its
architecture allows platform-independent compile with the outstanding
performance of native compiled code. The graphical user interface is
powerful, consistent, and intuitive. All windows update automatically
following activity in any other window. For example, selecting a design
region in the Structure window automatically updates the Source, Signals,
Process, and Variables windows. You can edit, recompile, and re-simulate
without leaving the ModelSim environment. All user interface operations
can be scripted and simulations can run in batch or interactive modes.

ModelSim DE simulates behavioral, RTL, and gate-level code, including
VHDL VITAL and Verilog gate libraries, with timing provided by the
Standard Delay Format (SDF).

Assertion-Based Verification with SVA and PSL
Assertion-based verification (ABV) improves design quality through the
insertion of white-box monitors that provide a window allowing active
monitoring of functional correctness. Assertions catch errors that tests
activate but fail to propagate to typical black-box observation points; such
as the primary outputs. The assertions also turbocharge time-to-debug
productivity because they identify functional bugs much closer to the

FEATURES AND BENEFITS:

•• Native compiled, Single Kernel
Simulator technology

•• VHDL, Verilog, PSL, and
SystemVerilog design and
assertions constructs

•• Intelligent, easy-to-use GUI with
Tcl interface

•• Integrated project management,
source code templates, and
wizards

•• Wave viewing and comparison;
objects, watch, and memory
windows increase debug
productivity

•• Code coverage

•• Standard support for Xilinx
SecureIP

•• SystemC option available

ModelSim DE offers the most verification capabilities in its class, including assertion-based
verification.

w w w . m e n t o r . c o m / f v

2

The Assertion Thread Viewer shows a
complete assertion evaluation identifying
why each thread passes or fails.

root cause. The time savings from a
significantly shorter causality
traceback can reach hours or even
days.

ModelSim DE enables ABV through
support of SystemVerilog Assertion
(SVA) constructs and the Property
Specification Language (PSL). Both
SVA and PSL assertions can be
either embedded within the design
HDL source code or specified in
separate units, then bound to the
appropriate module instance in the
design hierarchy.

Assertion Thread Viewer and
Assertion Browser
When complex assertions are
triggered, it can be challenging to
determine the cause of the failure
by examining simulation results in
only the Wave window. Assertions
can be logged to the Wave window
where activation, success, and
failure states are easily identified.
Since assertions can have multiple
threads in concurrent evaluation,

ModelSim DE includes an
innovative Assertion Thread Viewer,
which graphically shows the
complete evaluation of an activated
assertion. Each thread in the
evaluation is displayed, as is the
successor failure of every Boolean
expression evaluated in the
sequence of each thread. Local
variable values are also displayed
for a complete assertion debug
environment. Statistics for each
assertion can be examined in the
Assertion Browser window.
Assertion statistics include the
number of activations, successes,
failures, and vacuous successes for
each assertion.

A More Intelligent GUI
An intelligently engineered GUI
makes efficient use of desktop real
estate. ModelSim DE offers a highly
intuitive arrangement of interactive
graphical elements (windows,
toolbars, menus, etc.), making it
easy to view and access the many
powerful capabilities of ModelSim.
The result is a feature-rich GUI that
is easy to use and quickly mastered.
ModelSim redefined openness in
simulation by incorporating the Tcl
user interface into its HDL simulator.
Tcl is a simple but powerful
scripting language for controlling
and extending applications.

The ModelSim DE GUI delivers
highly productive design debug
and analysis capabilities as well as
project and file management.

Memory Window
The memory window allows
intuitive and flexible viewing and
debugging of design memories.

VHDL and Verilog memories are
auto-extracted from the source and
viewed in the GUI, allowing
powerful search, fill, edit, load, and
save functionality. The Memory

window supports pre-loading
memories from a file or using
constant, random, and computed
values, saving the time-consuming
step of initializing sections of
testbenches just to load memories.
All functions are available via the
command line, allowing their use in
scripting.

Waveform and Results
Viewing
ModelSim DE provides a high
performance, full-featured Wave
window. The Wave window
provides cursors for marking
interesting points in time and
measuring the time distance
between cursors. Wave window
contents can be formatted flexibly
through powerful virtual signal
definitions and grouping.

Waveform comparisons are easily
performed between two simulation
results. Timing differences between
RTL and gate-level simulation
results are easily handled through
user-specified time-filtering
capabilities.

ModelSim provides a unique WFL
management utility (aka WLFMAN)
that allows the manipulation of wlf
result files, enabling you to specify
the amount of information to
record to a WLF file or to subset an
existing WLF file based on signals
or time. The WLFMAN utility allows
efficient management of disk space
and post-simulation debug
efficiency.

Source Window Templates
and Wizards
VHDL and Verilog templates and
wizards allow you to quickly
develop HDL code without having
to remember the exact language
syntax. All the language constructs
are available with a click of a
mouse. Easy-to-use wizards step

©2017 Mentor Graphics Corporation, all rights reserved. This document contains information that is proprietary to Mentor Graphics Corporation and may
be duplicated in whole or in part by the original recipient for internal business purposes only, provided that this entire notice appears in all copies.
In accepting this document, the recipient agrees to make every reasonable effort to prevent unauthorized use of this information. All trademarks
mentioned in this document are the trademarks of their respective owners.

For the latest product information, call us or visit:

MGC 07-17 MAS-ICVS-01

w w w . m e n t o r . c o m / f v

A Powerful, Cost-Effective
Simulation Solution
ModelSim DE delivers a powerful
simulation solution ideally suited
for the verification of small and
medium sized FPGA designs;
especially designs with complex,
mission critical functionality.

Platform Support
ModelSim DE is supported on the
32/64-bit Windows 7, 8.1, 10 and
Linux RHEL 6-, 7- and SLES 11-based
platforms.

Using integrated code coverage, ModelSim DE tracks how much of the design has been tested.

you through creation of more
complex HDL blocks. The wizards
show how to create
parameterizable logic blocks,
testbench stimuli, and design
objects. The source window
templates and wizards benefit both
novice and advanced HDL
developers with time-saving
shortcuts.

Project Manager
The Project Manager greatly
reduces the time it takes to
organize files and libraries. As you
compile and simulate, the Project
Manager stores the unique settings
of each individual project, allowing
you to restart the simulator right
where you left off. Simulation
properties allow you to easily
re-simulate with pre-configured
parameters.

Code Coverage
Design verification completeness
can be measured through code
coverage. ModelSim DE supports
statement, expression, condition,
toggle, and FSM coverage. Code
coverage metrics are automatically
derived from the HDL source. As
many design blocks are created to
be configurable and reusable and
not all metrics are valuable, code
coverage metrics can be flexibly
managed with source code
pragmas and exclusions specified in
the code coverage browser.

